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Abstract
RPA (Rocket  Propulsion  Analysis)  is  a  design  tool  for  the  performance  prediction  of  the  liquid-
propellant rocket engines. RPA is written in Java and can be used under any operating system that has 
installed Java Runtime Environment (e.g. Mac OS  ® X,  Sun Solaris™, MS Windows™, any Linux 
etc). The tool can be used either as a standalone GUI application or as an object-oriented library.

This  document  presents  the  equations  used  for  the  combustion  equilibrium  and  performance 
calculations. Results obtained from implementing these equations will be compared with results from 
equilibrium codes CEA2 and TDC.  
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Symbols
A area, m2 
F area ratio
NS total number of species, gaseous and condensed
NG number of gaseous species

 number of chemical elements
a ij stoichiometric coefficient, number of the atoms of element i per mole of the species

j
n j moles of species j

N g moles of gaseous species
R molar (universal) gas constant, R = 8.314472 J⋅K−1⋅mol−1 (ref. 9)
H j

0 molar standard-state enthalpy for species j, J⋅mol−1

S j
0 molar standard-state entropy for species j, J⋅K−1⋅mol−1

G j
0 molar standard-state Gibbs energy for species j

p pressure, Pa
T temperature, K
w velocity, m/s
 density, kg/m3

V volume, m3

I s specific impulse, m/s

c∗ characteristic exhaust velocity, m/s
C F thrust coefficient

Superscripts:

  0 symbol for standard state
 symbol for molar parameter

 symbol for dimensionless parameter

Subscripts:

  inj injector face 

  c end of combustion chamber, or nozzle inlet section 

  t nozzle throat section

  e nozzle exit section

  0 symbol for assigned, initial or stagnation condition
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Analysis methods

Governing Equations for Combustion Equilibrium
The method used for obtaining equilibrium composition is based on a second law of thermodynamics, 
that is, if an isolated system is at equilibrium, an entropy is constant and reaches its maximum:

S=S max ; dS=0 ; d2 S0 (1)

Applying  that  law  to  the  rocket  engines,  it  is  convenient  to  express  the  condition  of  entropy 
maximization in its equivalent form through the minimization of Gibbs energy:

G=U−TS pV = Gmin ; dG=0 ; d 2G0 (2)

For the chemically reacting system the differential Gibbs energy is given by

dG = Vdp − SdT  ∑
j=1

NS

 j d n j (3)

where  j= j
0 R T ln p j is a chemical potential of the species j .

For the isobaric-isothermal system (i.e. dp=0 and dT=0 ) the equilibrium conditions can be 
written as

G=∑
j=1

NS

 j n j = Gmin ; dG = ∑
j=1

NS

 j d n j = 0 (4)

The minimization of Gibbs energy is subject to constraint based on the fundamental physical principle: 
the mass of the isolated system is conserved. That is given by

∑
j=1

NS

aij mi n j−b i ,0=0 i=1. .. , (5)

where a stoichiometric coefficients a ij are the number of the atoms of element i per mole of the 
species j , the index  is the number of chemical elements, mi are atomic mass of element i ,

b i ,0 are the assigned total mass of atoms of element i in the system.

Finally, the condition for equilibrium can be written as minimization function

∑
j=1

NS

 j n j=Gmin (6)

under the constraints

∑
j=1

NS

aij n j−
bi , 0

mi
=0 i=1. .. . (7)

That conditional minimization problem can be solved by the method of Lagrange multipliers. 

Defining a new function L to be 

L n1 ,... , nNS ,1,. .. , = ∑
j=1

NS

 j n j − ∑
i=1



i∑j=1

NS

a ij n j−
b i ,0

mi
 , (8)
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where i are  Lagrange multipliers, the condition for equilibrium becomes

 j−∑
i=1



i aij = 0  j=1... NS  (9a)

∑
j=1

NS

aij n j−
bi , 0

mi
= 0 i=1. .. (9b)

where 

 j={ j
0 R T ln

n j

N g
 R T ln p

p0
 j=1,... , NG 

 j
0  j=NG1,... , NS  } ,  j

0 =
G j

0

n j
= G j

0 , (10)

N g=∑
j=1

NG

n j is the total mole number of gaseous species, and p0 is a standard-state pressure.

Reducing expressions  and separating terms for  gaseous  and condensed  phases,  the final  equations 
become

G j
0 R T ln

n j

N g
 R T ln p

p0
−∑

i=1



i a ij = 0  j=1... NG  (11a)

G j
0−∑

i=1



i a ij = 0  j=NG1. .. NS  (11b)

∑
j=1

NS

aij n j−
bi , 0

mi
= 0 i=1. .. (11c)

∑
j=1

NG

n j−N g = 0 (11d)

The  set  (11)  consists  of NS1 simultaneous  equations  and  can  be  solved  for  variables
{N g ,n1 , ... , nNS ,1 ,... ,} ,  providing  the  equilibrium  composition  for  the  isobaric-isothermal 

problem with assigned pressure and temperature (p,T)=const. 
For  the  combustion  chamber  and  nozzle  of  rocket  engines,  the  temperature  of  the  equilibrium 
composition is an unknown variable that has to be determined as well.

Assuming the combustion in the chamber of the rocket engine to be isobaric-adiabatic (i.e., the pressure 
is constant and no heat is transferred to or from the chamber), from the first law of thermodynamics 
follows

dH = dQVdp = 0 (12)

The last equation states that the combustion is an isenthalpic process, that is it proceeds without any 
change in enthalpy. That can be expressed as 

∑
j=1

NS

n j
H j

0 − H 0 = 0 (13)

where H j
0 are the molar enthalpy of the species j , H 0 is a constant equal to enthalpy of the 

propellant components.
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The final equations that permit the determination of equilibrium composition for thermodynamics state 
specified by an assigned pressure and enthalpy become

G j
0 R T ln

n j

N g
 R T ln p

p0
−∑

i=1



i aij = 0  j=1... NG  (14a)

G j
0−∑

i=1



i a ij = 0  j=NG1. .. NS  (14b)

∑
j=1

NS

aij n j−
bi , 0

mi
= 0 i=1. .. (14c)

∑
j=1

NG

n j−N g = 0 (14d)

∑
j=1

NS

n j
H j

0 − H 0 = 0 (14e)

The  set  (14)  consists  of NS2 simultaneous  equations  and  can  be  solved  for  variables
{N g ,n1 , ... , nNS ,1 ,... , ,T } ,  providing the equilibrium composition for the isobaric-isenthalpic 

problem with assigned pressure and enthalpy (p,H)=const.
In order to determine the equilibrium composition for the nozzle flow, it is assumed that the entropy of 
the composition remains constant during expansion through the nozzle:

∑
j=1

NS

n j
S j − S 0 = 0 (15a)

S j={S j
0− R ln

n j

N g
− R ln p

p0
 j=1,. .. , NG 

S j
0  j=NG1,... , NS  } (15b)

where N g=∑
j=1

NG

n j is the total mole number of gaseous species, p0 is a standard-state pressure, and

S0 is an entropy of the composition at the end of the combustion chamber.

Substituting last terms into the initial equations, and separating equations for gaseous and condensed 
phases, the final equations become

G j
0 R T ln

n j

N g
 R T ln p

p0
−∑

i=1



i a ij = 0  j=1... NG  (16a)

G j
0−∑

i=1



i a ij = 0  j=NG1. .. NS  (16b)

∑
j=1

NS

aij n j−
bi , 0

mi
= 0 i=1. .. (16c)

∑
j=1

NG

n j−N g = 0 (16d)
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∑
j=1

NG

n j S j
0− R ln

n j

N g
− R ln p

p0
  ∑

j=NG1

NS

n j
S j

0 − S 0 = 0 (16e)

The  set  (16)  consists  of NS2 simultaneous  equations  and  can  be  solved  for  variables
{N g ,n1 , ... , nNS ,1 ,... , ,T } ,  providing  the  equilibrium composition  for  the  isobaric-isentropic 

problem with assigned pressure and entropy (p,S)=const. 

Iteration Equations for Combustion Equilibrium
The equations (11), (14) and (16) are not all linear and an iteration procedure is required. A Newton 
method is used to solve for corrections to initial estimates of variables.

After applying a Newton-type linearization to equations (11), (14) and (16) the linearized equations for 
corresponding problems are as follows: 

for the problem (p,T)=const

 ln n j− ln N g−∑
i=1



aij i =−
G j

0

R T
−ln n jln N g−ln p

p0

 j=1... NG  (17a)

∑
i=1



a ij i =
G j

0

R T
 j=NG1. .. NS  (17b)

∑
j=1

NG

aij n j ln n j  ∑
j=NG1

NS

a ij n j =
b i ,0

mi
− ∑

j=1

NS

aij n j i=1. .. (17c)

∑
j=1

NG

n j ln n j − N g ln N g = N g − ∑
j=1

NG

n j (17d)

  

for the problem (p,H)=const

 ln n j − lnN g−∑
i=1



aiji−
H j

0

R T
 ln T  =−

G j
0

R T
−lnn jln N g−ln p

p0

 j=1... NG  (18a)

∑
i=1



aiji 
H j

0

R T
ln T  =

G j
0

R T
 j=NG1. .. NS  (18b)

∑
j=1

NG

aij n j ln n j  ∑
j=NG1

NS

a ijn j =
bi , 0

mi
−∑

j=1

NS

aij n j i=1... (18c)

∑
j=1

NG

n jln n j  − N g ln N g = N g − ∑
j=1

NG

n j (18d)

∑
j=1

NG

n j

H j
0

R T
 ln n j   ∑

j=NG1

NS

n j

H j
0

R T
 ln n j   ∑

j=1

NS

n j

C p , j
0

R
 ln T  =

H 0

R T
− ∑

j=1

NS

n j

H j
0

R T
(18e)

for the problem (p,S)=const
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 ln n j − ln N g−∑
i=1



aiji−
H j

0

R T
 ln T  =−

G j
0

R T
−ln n jln N g−ln p

p0

 j=1... NG  (19a)

∑
i=1



aiji 
H j

0

R T
ln T  =

G j
0

R T
 j=NG1. .. NS  (19b)

∑
j=1

NG

aij n j ln n j  ∑
j=NG1

NS

a ijn j =
bi , 0

mi
−∑

j=1

NS

aij n j i=1. .. (19c)

∑
j=1

NG

n jln n j  − N g ln N g = N g − ∑
j=1

NG

n j (19d)

∑
j=1

NG [ S j
0

R
− lnn j−ln N g ln p

p0
1]n jln n j  ∑

j=NG1

NS

n j

S j
0

R
ln n j  ∑

j=1

NS

n j

C p , j
0

R
 lnT 

∑
j=1

NG

n j ln N g =
S 0

R
− ∑

j=1

NG [ S j
0

R
− ln n j−ln N gln p

p0 ]n j − ∑
j=NG1

NS

n j

S j
0

R

(19e)

The set (17) consists of NS1 linear simultaneous equations and can be solved for correction 
variables { ln N g , ln n1 , ... , ln nNG , nNG1 ,... ,nNS ,1, ... ,} .  The  sets  (18)  and  (19) 
each consist of NS2 linear simultaneous equations and can be solved for correction variables
{ ln N g , ln n1 , ... , ln nNG ,n NG1 , ... ,nNS ,1, ... , , lnT } . Here a new variable i

defined as i=
i

R T
.

Iteration Procedure for Combustion Equilibrium
The  solutions  proceeds  by  solving  the  appropriate  set  of  linear  simultaneous  equations  and 
incrementally  updating  the  number  of  moles  for  each  species n j ,  the  total  moles N g and  the 
temperature T (for the (p,H) and (p,S) problems) until the correction variables are within a specified 
tolerance. At each iteration, the updated set of linear equations is solved using a Lower-Upper (LU) 
matrix decomposition algorithm. 

An initial estimates and controlling the divergence are made, as suggested by Gordon and McBride 
(ref. 3).

Thermodynamics Derivatives from Equilibrium Solution

Derivatives from Composition With Respect to Pressure
Differentiating equations (11) with respect to pressure gives

∑
i=1



a ij i

 ln p T   ln N g

 ln p 
T
−  ln n j

 ln p T = 1  j=1,... , NG  (20a)

∑
i=1



a ij i

 ln p T = 0  j=NG1,. .. , NS  (20b)
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∑
j=1

NG

akj n j  ln n j

 ln p T  ∑
j=NG1

NS

akj n j

 ln p T = 0 k=1,. .. , (20c)

∑
j=1

NG

n j ln n j

 ln p T
− N g ln N g

 ln p 
T
= 0 (20d)

The set  (20) consists  of NS1 linear simultaneous equations and can be solved for unknown 

terms   ln n1

 ln p T , ... , ln nNS

 ln p 
T

, ln N g

 ln p 
T

, 1

 ln p T ,... , 

 ln p T .

Derivatives from Composition With Respect to Temperature
Differentiating equations (11) with respect to temperature gives

∑
j=1

NG

aij n j  ln n j

 ln T 
p
 ∑

j=NG1

NS

a ij  n j

 ln T p
= 0 i=1,... , (21a)

∑
i=1



aij i

 ln T p
= −

H j
0

R T
 j=NG1,. .. , NS  (21b)

∑
j=1

NG

aij n j  ln n j

 ln T 
p
 ∑

j=NG1

NS

a ij  n j

 ln T p
= 0 i=1,... , (21c)

∑
j=1

NG

n j ln n j

 ln T p
− N g ln N g

 ln T 
p
= 0 (21d)

The set  (21) consists  of NS1 linear simultaneous equations and can be solved for unknown 

terms   ln n1

 lnT 
p

, ... , ln nNS

 ln T 
p

, ln N g

 ln T 
p

, 1

 lnT p
, ... , 

 ln T p
.

Derivatives from perfect gas state equation

Differentiating equation of state pV =N g
R T with respect to temperature gives

 ln V
 ln T p

=  ln N g

 ln T 
p
1 (22)

Differentiating equation of state with respect to temperature gives

 ln V
 ln p T =  ln N g

 ln p 
T
−1 (23)

Heat Capacity and Specific Heat
Heat capacity of the thermodynamic system at constant pressure is defined as
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C p = H
T p

=  [∑j=1

NS

n j
H j

0]
T 

p

(24)

and after differentiation gives

C p = ∑
j=1

NG

n j

H j
0

T  ln n j

 ln T 
p
 ∑

j=NG1

NS H j
0

T  n j

 ln T p
 ∑

j=1

NS

n j
C p , j

0 (25)

Molar heat capacity and specific heat are

C p =
C p

∑
j=1

NS

n j
(26)

and 

c p =
C p

m
=

C p

m∑
j=1

NS

n j

=
C p

m (27)

correspondingly.

Relation between heat capacities can be expressed as

C p−C v = −T
V
T 

p

2

V
 p T

= −T

V 2

T 2  ln V
 ln T p

2

V
p  ln V

 ln p T
= − pV

T
 ln V
 lnT 

p

2

 lnV
 ln p T

= −N g
R
 ln V
 ln T p

2

 ln V
 ln p T

(28)

After substitution (22) and (23) into equation (28), the heat capacity of the thermodynamic system at 
constant volume can be found from the previous equation:

C v = C p  N g
R
 ln V
 lnT 

p

2

 ln V
 ln p T

(29)

Molar heat capacity and specific heat are

C v =
C v

∑
j=1

NS

n j
(30)

and 

cv =
C v

m
=

C v

m∑
j=1

NS

n j

=
C v

m (31)

correspondingly.
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Specific heat ratio is defined as

 =
C p

C v
=

C p

C v

=
c p

cv
 (32)

whereas isentropic exponent is

k = − 

 lnV
 ln p T (33)

Velocity of sound
The velocity of sound is defined as

a2 =  p
 S (34)

Expressing  =  m
V

= − m
V 2 V , the last equation can be rewritten as

a2 = −V 2

m  p
V 

S
(35)

From the Euler's chain rule

 p
V 

S
= −

S
V 

p

 S
 p V

= −
S
V 

p
T T

T p

S
 p V T T

T V
= −

T S
T p

T
V 

p

T  S
T V T

 p V
(36)

Since T  S
T p

= C p , T  S
T V = C v and (from the Euler's chain rule again)

T
 p V V

T 
p
= −V

 p T , the equation (36) can be reduced to

 p
V 

S
= 

V
 p T

= p
V



 ln V
 ln p T (37)

Substituting (37) into equation (35),  velocity of sound is expressed as

a2 = −p v 

 ln V
 ln p T

Recalling the equation of perfect gas state, the velocity of sound can now be written as

a2 = − 

 lnV
 ln p T

R T

∑
j=1

NG

n j m j
(38)
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Density 

 = p
1000 N g

R T
∑
j=1

NS

n j m j

Thermodynamic Derivatives for Frozen Flow
It can be shown, that for the “frozen” flow where composition remains fixed, the mentioned derivatives 
can be reduced to

 C p , f = ∑
j=1

NS

n j
C p , j

0 , (39)

C v , f = C p , f  ∑
j=1

NS

n j
R , (40)

k f =  f =
C p , f

C v , f
=

C p , f

C v , f

=
c p , f

cv , f
(41)

a f
2 = k f

R
m

T (42)

Thermodynamic Data
The program supports the thermodynamic database in ASCII format (ref. 6) and can utilize original 
NASA database of McBride (ref. 4) as well as its enlargements (e.g. provided by Burcat and Ruscic, 
ref. 7). Both databases are included with the current program distribution. 

For each reaction species the thermodynamic functions heat capacity, enthalpy and entropy as functions 
of temperature are given in the polynomial form using 9 constants as follows: 

C p
0

R
= a1T−2  a2 T−1  a3  a4 T  a5 T 2  a6T 3  a7T 4 (43)

H 0

RT
= −a1T−2  a2ln T T−1  a3 

a4

2
T 

a5

3
T 2 

a6

4
T 3 

a7

5
T 4  a8T−1 (44)

S 0

R
= −

a1

2
T−2 − a2T−1  a3ln T   a4 T 

a5

2
T 2 

a6

3
T 3 

a7

4
T 4  a9 (45)

Theoretical Rocket Engine Performance
The following assumptions are made for the calculation of the theoretic rocket performance: adiabatic, 
isenthalpic  combustion;  adiabatic,  isentropic  (frictionless  and  no  dissipative  losses) quasi-one-
dimensional nozzle flow; ideal gas law; no dissipative losses.

Combustion Chamber Conditions
The analysis is started by obtaining the combustion chamber equilibrium composition assuming the 
isobaric-isenthalpic combustion, followed by calculation of the thermodynamics derivatives from the 
equilibrium  solution.  The  results  include  the  number  of  moles  for  each  species,  combustion 
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temperature, heat capacity,  enthalpy and entropy of the reacting mixture, as well as specific heat ratio, 
isentropic exponent and velocity of sound.

Once the combustion equilibrium composition obtained, the throat conditions can be found. 

Throat Conditions for Infinite-area combustion chamber
When  the  chamber  section  is  large  compared  to  the  nozzle  throat  section,  the  velocity  in  the 
combustion chamber is comparatively small. This leads to the tiny pressure and temperature drop, and 
the conditions at the nozzle inlet can be considered as identical to that at the injector face. The last 
statement can be expressed as

p inj=pc=p0c=const (46a)

h inj=hc=const (46b)

sinj=sc=const (46c)

w inj=w c=0 (46d)

where p0c is a stagnation pressure. 

Knowing  the  conditions  at  nozzle  inlet  and  assuming  isentropic  expansion  in  the  nozzle,  the 
equilibrium routine for the problem (p,S)t=const can be utilized to determine the composition at throat 
section.

Because the pressure p t is unknown, an iterative procedure is conducted with initial estimate 

p t
0  = pc 2

k c1 
k c

k c−1  (47)

At each iteration, the solution of the problem  p t
 i , S t =const is used to determine the flow velocity 

and Mach number at throat section:  

w t
i =2hc−ht

i wc
2 (48)

M t
i =

wt
i 

a t
i  (49)

where the chamber velocity w c is comparatively small and term w c
2 can be neglected.

Iteration is repeated until the difference ∣M t
i −1∣ is within a specified convergence tolerance. For the 

next iteration (i+1) the improved throat pressure is calculated as 

p t
i1 = pt

 i k M  i21
k1

(50)

Throat Conditions for Finite-area combustion chamber
As stated in ref. 10, when the chamber has a cross section that is larger than about four times the throat 
area  ( F c=Ac /A t4 ),  the  chamber  velocity  can  be  neglected.  To  the  contrary,  in  combustion 
chambers with relatively small cross section, the expansion of the gases is accompanied by significant 
acceleration and pressure drop. The acceleration process in the chamber is assumed to be adiabatic, but 
not isentropic, and the pressure drop leads to the lower pressure at nozzle inlet pc . This causes a 
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small loss in specific impulse.

Because  both  nozzle  inlet  pressure pc and  nozzle  throat  pressure p t are  unknown,  two-level 
iterative procedure is conducted with initial estimates

pc
0 = 1

c [1 k inj M c
2

T pinj ] (51a)

where c is a characteristic Mach number at nozzle inlet obtained for subsonic flow from equation 

1
F c
=k1

2 
1

k−1c1− k−1
k1

c
2

1
k−1 with assumption k=k inj ; M c is a Mach number that 

corresponds to the calculated characteristic Mach number; 

T=−
 lnV
 ln p T

p
and c=1− k−1

k1
c

2
k

k−1 also with assumption k=k inj ;

c
0= inj (51b)

For the assigned chamber contraction area ratio F c=Ac /At , the iteration proceeds as follows:

1. Assuming that velocity at injector face can be neglected, the velocity at the nozzle inlet is obtained 
from the momentum equation for steady one-dimensional flow:

wc
i = p inj−pc

 i

c
i  (52)

2.  If  acceleration process in the chamber is adiabatic,  the total  enthalpy per unit  mass is constant. 
Recalling that velocity at injector face can be neglected, the specific enthalpy at nozzle inlet can be 
expressed as

hc
 i=hinj−

w c
 i2

2
(53)

3. Solution of the problem (p,H)c=const for the nozzle inlet section provides the entropy at nozzle inlet
Sc
i  . 

4. Known conditions at nozzle inlet and assumption about an isentropic expansion in the nozzle allow 
to  obtain  the  throat  conditions  (including  throat  pressure p t

i  and  density t
i  ),  utilizing  the 

procedure similar to that for the infinite-area combustion chamber (equations 47 to 50).

5. From the continuity equation for steady quasi-one-dimensional flow, find the velocity at the nozzle 
inlet for the specified chamber contraction ratio:

wc=t w t

c 
 i

1
Fc

(54)

6. From the momentum equation, find the pressure at injector face that corresponds to the calculated 
pressure and velocity at the nozzle inlet:

p inj=pc
i c

i  w c
2 (55)

14



Iteration  is  repeated  until  the  relative  deviation
∣p inj−p inj∣

pinj
is  within  a  specified  convergence 

tolerance. The improved nozzle inlet pressure for the next iteration (i+1) is calculated as

pc
i1=pc

 i pinj

pinj
(56)

The stagnation pressure at nozzle inlet section can be computed from

p0c= pc[1k c−1
w c

2c

2k c pc ]
k c

kc−1 (57)

Nozzle Exit Conditions

Equilibrium Conditions
Equilibrium conditions at section specified by assigned pressure pe

Knowing  the  conditions  at  nozzle  throat  and  assuming  isentropic  expansion  in  the  nozzle,  the 
equilibrium routine for the problem (p,S)e=const can be directly utilized to determine the composition 
at nozzle exit section.

The corresponding nozzle area ratio can be obtained from

F e=
t a t

e we
(58)

Equilibrium conditions at section specified by assigned nozzle area ratio F e=Ae /A t

Knowing  the  conditions  at  nozzle  throat  and  assuming  isentropic  expansion  in  the  nozzle,  the 
equilibrium routine for the problem (p,S)e=const can be utilized to determine the composition at nozzle 
exit section.

Because the pressure pe is unknown, an iterative procedure is conducted with initial estimate 

pe
0 =pc1− k−1

k1
e

2
k

k−1 with assumption k=k t (59)

where e is a characteristic Mach number at nozzle exit obtained for supersonic flow from equation 

1
F e
=k1

2 
1

k−1e1− k−1
k1

e
2

1
k−1 also with assumption k=k t .

At each iteration, the solution of the problem  p i , S e=const is used to determine the nozzle area 
ratio that corresponds to the assumed nozzle exit pressure: 

we
i =2 hc−h t

 i wc
2 (60)

F e
 i=

 t at

e
 i we

i  (61)
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Iteration  is  repeated  until  the  relative  deviation
∣ F e−F e

 i∣
F e

is  within  a  specified  convergence 

tolerance. The improved nozzle exit pressure for the next iteration (i+1) is calculated as

pe
i1=pe

 i F e
 i 

Fe 
2

(62)

Frozen Conditions
For the frozen conditions  it  is  assumed that  chemical  equilibrium is  established within the nozzle 
section r between nozzle throat and nozzle exit. Once the reaction products passed through that section, 
the composition is considered to be invariant (frozen), and does not change.

That is, the nozzle exit composition is defined as {N g ,n1 , ... , nNS }e={N g , n1 , ... , nNS }r=const .

The remainder procedure is as follows.  

Frozen conditions at section specified by assigned pressure pe

In that case the unknown variable T e can be determined from equation

∑j=1

NS

n j
S je − S r = 0 (63a)

where S j={S j
0− R ln

n j

N g
− R ln p

p0
 j=1,. .. , NG 

S j
0  j=NG1,... , NS  } (63b)

Frozen conditions at section specified by assigned nozzle area ratio F e=Ae /A t

In that case the unknown variables {T e , pe} can be found from the following equations:

∑j=1

NS

n j
S je − S r = 0 (64a)

where S j={S j
0− R ln

n j

N g
− R ln p

p0
 j=1,. .. , NG 

S j
0  j=NG1,... , NS  }

p
g
∑
j=1

NG

n j m j = N g
R T (64b)

F r =
wt
wr

(64c)

h 
w2

2 
e
= h 

w 2

2 
r

(64d)

The set of simultaneous equations (64a) to (64d) can be solved for variables {p , T , , w}e .
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Theoretical Rocket Engine Performance
The following equations for the theoretical rocket engine performance obtained from ref. 10 and 11.

Characteristic exhaust velocity: 

c∗=
p0c

at t
(65)

Specific impulse in a vacuum:

I s
vac=we

pe

we e
(66)

Specific impulse at ambient pressure pH :

I s
H=we

pe−pH

we e
(67)

Optimum specific impulse ( pe=pH ):

I s
opt=we (68)

Thrust coefficient in vacuum:

C F
vac=

I s
vac

c∗
(69)

Optimum thrust coefficient:

C F
opt=

I s
opt

c∗
(70)

Note that the equation (67) can be used for nozzle conditions without flow separation caused by over-
expansion. In order to correctly predict the nozzle performance under highly over-expanded conditions, 
a more accurate model that considers flow separation and shock waves is required.

Computer Program RPA

Graphical User Interface

Input Parameters
The minimal set of input parameters include

–  combustion chamber pressure (expressed in Pascal, atm, bar or psia)

–  propellant combination

–  mixture ratio "O/F" or relative abundance of oxidizer (α) or mass fractions of each component;

–  list of components at standard conditions or at assigned temperature (K);

–  assigned enthalpy (kJ/kg or J/mol, optional).

When the minimal set of parameters is defined, the program calculates combustion equilibrium and 
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determines the properties of the reaction products.

Additional set of input parameters include nozzle analysis options:

–  nozzle exit conditions

assigned nozzle exit pressure (Pascal, atm, bar od psia) or nozzle exit area ratio;

–  nozzle inlet conditions (optional)

assigned chamber contraction area ratio or mass flow rate per unit combustion chamber area 
( kg /m2⋅s );

–  frozen flow (optional)

freezing at the assigned pressure (Pascal, atm, bar or psia) or at the assigned nozzle area ratio.

The complete set of input parameters can be stored in and loaded from the file system.

The program supports the following optional command-line switches:

language=en|de|ru to select the language of the user interface

country=US|DE|RU to select the country that affects the data output format

useEn=yes|no to allow the usage of thermodynamic database enlargement 
(provided by Burcat and Ruscic)

useEx=<path> to specify the external thermodynamic database 

Output Data
For the minimal set of input parameters, results of thermodynamic calculations include combustion 
parameters and composition.
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For the set of input parameters that  includes nozzle analysis options, conditions at nozzle throat and 
nozzle exit, as well as theoretical rocket engine performance, will be determined.

Verification
The tool was compared with a code CEA2 (Chemical Equilibrium and Applications 2) developed by 
Gordon and McBride (ref.  4)  at  NASA Glenn/Lewis Research Center, and TDC (ThermoDynamic 
Сalculation for LRE) developed at Moscow Aviation Institute (ref. 12).

To verify the RPA model and implementation, six test cases were selected (see Table 1).

Table 1. Test cases
Test case 1 Test case 2 Test case 3 Test case 4 Test case 5 Test case 6

Oxidizer/Temperature, K LOX / 90.17 LOX / 90.17 LOX / 90.17 LOX / 90.17 LOX / 90.17 LOX / 90.17

Fuel/Temperature, K LH / 20.27 LH / 20.27 CH4 (L) / 111.643 CH4 (L) / 111.643 RP-1 /  298.15
RG-1 / 293

RP-1 /  298.15

O/F ratio 5.5 5.5 3.2 3.2 2.6 2.6

Chamber pressure, MPa 10 10 10 10 10 10

Chamber contraction area ratio – 2 – 2 – 2

Nozzle exit area ratio 70 70 70 70 70 70

For all test cases, RPA and CEA2 were executed with identical input parameters. 

Due to  the fact  that  TDC does  not  support  the  calculation of  rocket  performance  with finite  area 
combustion chamber, RPA and TDC were compared for test cases 1, 3 and 5. Input parameters for both 
programs  were  identical  excepting  the  test  case  5:  because  of  the  differences  in  the  used 
thermodynamic  databases,  RPA calculated  the  combustion  of  the  fuel  RP-1  at  initial  temperature 
298.15 K whereas TDC calculated the combustion of  the fuel RG-1 at initial temperature 293 K.

Tables 2 to 10 provide the results of thermodynamic calculations.

Perfect agreement was obtained between RPA and CEA2 codes.
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Very good agreement with small deviations was obtained between RPA and TDC codes.

Table 2. Results of thermodynamics calculations for Test case 1
RPA CEA2 TDC

Chamber temperature, K 3432.01 3432.01 3436.10

Characteristic velocity, m/s 2345.30 2345.30 2346.35

Thrust coefficient 1.87 (opt) 
1.94 (vac)

1.8728 (opt)
–

–
1.93950 (vac)

Specific impulse, vac, m/s 4549.28 4549.20 4550.86

Specific impulse, opt, m/s 4392.36 4392.30 4393.77

Nozzle exit Mach number 4.69 4.69 4.67

Table 3. Results of thermodynamics calculations for Test case 2
RPA CEA2

Chamber temperature, K 3432.01 3432.01

Nozzle inlet pressure, MPa 8.98100 8.98130

Characteristic velocity, m/s 2344.62 2344.60

Thrust coefficient (opt) 1.870 1.873

Specific impulse, vac, m/s 4548.97 4548.90

Specific impulse, opt, m/s 4391.94 4391.90

Nozzle exit Mach number 4.69 4.69

Table 4. Mole fractions in combustion chamber for Test cases 1 and 2
Species RPA CEA2 TDC

H 0.02775 0.02775 0.02800

H2 0.30152 0.30152 0.30089

H2O 0.64016 0.64016 0.64195

H2O2 0.00001 0.00001 0.0

HO2 0.00001 0.00001 0.0

O 0.00140 0.00140 0.00143

O2 0.00115 0.00115 0.00116

OH 0.02799 0.02800 0.02658

Table 5. Results of thermodynamics calculations for Test case 3
RPA CEA2 TDC

Chamber temperature, K 3566.07 3566.07 3581.01

Characteristic velocity, m/s 1862.41 1861.20 1866.16

Thrust coefficient 1.91 (opt) 
1.99 (vac)

1.9083 (opt)
–

–
1.9888 (vac)

Specific impulse, vac, m/s 3701.07 3700.90 3711.49

Specific impulse, opt, m/s 3551.82 3551.70 3559.80

Nozzle exit Mach number 4.44 4.44 4.42
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Table 6. Results of thermodynamics calculations for Test case 4
RPA CEA2

Chamber temperature, K 3566.07 3566.07

Nozzle inlet pressure, MPa 8.99100 8.99140

Characteristic velocity, m/s 1860.31 1860.30

Thrust coefficient (opt) 1.910 1.909

Specific impulse, vac, m/s 3700.35 3700.40

Specific impulse, opt, m/s 3550.90 3551.00

Nozzle exit Mach number 4.43 4.43

Table 7. Mole fractions in combustion chamber for Test cases 3 and 4
Species RPA CEA2 TDC

CO 0.19733 0.19733 0.19811

CO2 0.11704 0.11704 0.11604

COOH 0.00002 0.00002 0.0

H 0.02155 0.02155 0.02224

H2 0.09898 0.09898 0.09868

H2O 0.49169 0.49169 0.49185

H2O2 0.00002 0.00002 0.0

HCO 0.00002 0.00002 0.0

HO2 0.00009 0.00009 0.0

O 0.00641 0.00641 0.00685

O2 0.01221 0.01221 0.01294

OH 0.05463 0.05463 0.05334

Table 8. Results of thermodynamics calculations for Test case 5
RPA CEA2 TDC

Chamber temperature, K 3723.63 3723.63 3668.12

Characteristic velocity, m/s 1800.60 1800.60 1866.16

Thrust coefficient 1.92 (opt) 
2.00 (vac)

1.9152 (opt)
–

–
1.9888 (vac)

Specific impulse, vac, m/s 3596.50 3596.60 3711.49

Specific impulse, opt, m/s 3448.37 3448.50 3559.80

Nozzle exit Mach number 4.39 4.39 4.42

Table 9. Results of thermodynamics calculations for Test case 6
RPA CEA2

Chamber temperature, K 3723.63 3723.63

Nozzle inlet pressure, MPa 8.99 8.99

Characteristic velocity, m/s 1799.63 1799.6
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RPA CEA2

Thrust coefficient (opt) 1.920 1.916

Specific impulse, vac, m/s 3595.96 3595.9

Specific impulse, opt, m/s 3447.67 3447.6

Nozzle exit Mach number 4,39 4,38

Table 10. Mole fractions in combustion chamber for Test cases 5 and 6
Species RPA CEA2 TDC

CO 0.31521 0.31521 0.30225

CO2 0.15383 0.15383 0.15437

COOH 0.00003 0.00003 0.0

H 0.02686 0.02686 0.02430

H2 0.07954 0.07954 0.08151

H2O 0.33329 0.33329 0.35946

H2O2 0.00002 0.00002 0.0

HCO 0.00004 0.00004 0.0

HO2 0.00011 0.00011 0.0

O 0.01119 0.01119 0.00909

O2 0.01785 0.01785 0.01513

OH 0.06202 0.06202 0.05389

Conclusion
A tool suitable for the use in preliminary or conceptual design for the prediction of the liquid-propellant 
rocket engines performance has been established. The implementation in highly portable Java language 
was shown to obtain perfect agreement with industrial-quality Chemical Equilibrium and Application 
(CEA2) code.
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