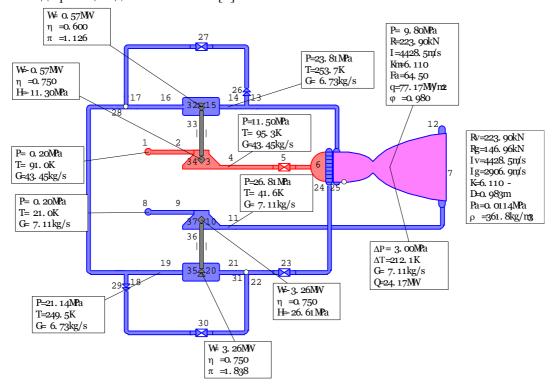
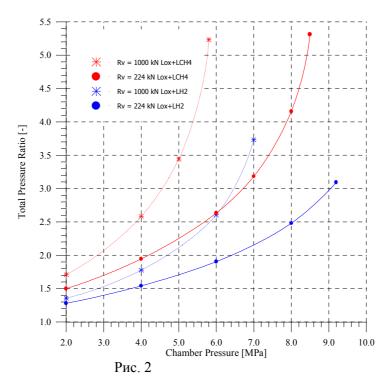
4 th International Conference on Launcher Technology "Space	ce Launcher Liquid Propulsion" 3-6 December 2002 – Liege (Belgium)
Безгенераторный ЖРД тягой 200 т.с. на угле	водородном горючем
Калмыков Г.П., Лебединский Е.В., Тарарышки	н В.И., Елисеев И.О.
125438, Россия, Москва, ул. Онежская	, 8/10.
Исследовательский Центр имени М.В. К	елдыша
Телефон: (095) 456-64-85	
Факс: 007-095-456-8228	
E-mail: kerc@elnet.msk.ru	

ВВЕДЕНИЕ

Первый безгенераторный ЖРД был создан американской фирмой Pratt&Whitney Aircraft в 1958–1963 гг. Он известен как двигатель RL-10 [1]. Этот двигатель оказался «долгожителем» и с 1963 года претерпел массу модификаций [2]. Успешный опыт эксплуатации этого двигателя, простота его схемы и высокое энерго-массовое совершенство порождают интерес к подобной схеме во многих конструкторских организациях разных стран мира: США, Японии, Франции, России.

В качестве примера на рис.1 приведена схема и наши оценки основных параметров одной из последних модификаций двигателя RL10 [3].




Рис. 1

Достоинства безгенераторной схемы ЖРД:

- Высокая экономичность, обусловленная использованием предкамерных турбин и отсутствием потерь на завесное охлаждение за счет использования только регенеративного охлаждения. В чистом виде это схема с дожиганием рабочего тела турбин в камере сгорания.
- Повышенная надежность, обусловленная отсутствием газогенератора, использованием в качестве рабочего тела турбин газообразного водорода, низкой температурой рабочего тела турбины (200÷400°К).

Недостатки безгенераторной схемы ЖРД:

- Низкий диапазон реализуемых тяг (см. рис.2).
- Высокий уровень напора основного насоса горючего.
- Невозможность использования этой схемы для высококипящего горючего (керосина).
- Низкий уровень давлений в камере сгорания (см. рис.2).
- Применимость только для криогенного горючего (водород, метан) (см. рис.2).

Конечная цель работы – сохранив положительные достоинства безгенераторной схемы ЖРД, устранить ее недостатки за счет новых схемных решений.

1. ОПИСАНИЕ НОВОЙ СХЕМЫ БЕЗГЕНЕРАТОРНОГО ЖРД

Предлагаемая нами новая схема безгенераторного ЖРД приведена на рис.3. Ее характерные особенности:

- 1. Регенеративное охлаждение камеры сгорания и сопла специальным (третьим) компонентом.
- 2. Третий компонент (хладагент) отбирает тепло из камеры сгорания и сопла и сбрасывает его при помощи теплообменника (узел 17 на рис.3) в окислитель (кислород). В процессе работы двигателя хладагент не расходуется, а при помощи специального насоса (узел 27 на рис.3) совершает круговое (циркуляционное) движение: насос, тракт охлаждения, теплообменник, насос.
- 3. Рабочим телом турбин является кислород, подогреваемый в теплообменнике (узел 17 на рис.3).
- 4. Отработанный на турбинах газообразный кислород подается на вход основного насоса окислителя, где в специальном струйном холодильнике-смесителе (узел 2 на рис.3) охлаждается и сжижается, смешиваясь с холодным окислителем из бака.
- 5. Чтобы обеспечить безкавитационную работу основного насоса окислителя в этих условиях, необходим бустерный насос кислорода (не показан на рис.3), который должен обеспечить необходимое повышенное давление в струйном холодильнике-смесителе.
- 6. Кислород, являющийся рабочим телом турбин, совершает круговое (циркуляционное) движение: насос кислорода, теплообменник, турбина линии горючего, турбина линии окислителя, холодильник-смеситель, основной насос окислителя.

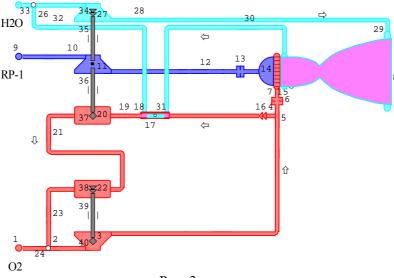


Рис. 3

В основу построения новой схемы ЖРД положено несколько технических идей:

- 1. Использование тепла из камеры сгорания для разогрева рабочего тела турбин (основная идея двигателя RL-10).
- 2. Ориентация только на регенеративное охлаждение камеры сгорания и сопла.
- 3. Разграничение функций (автономность) контура охлаждения и контура привода турбин.
- 4. Идея отправить отработанный на турбинах газ не в камеру сгорания, а на вход основного насоса окислителя.

Переходя к анализу результатов расчетов хочу заметить, что все расчеты данной работы были выполнены при помощи разработанного в Центре Келдыша программного комплекса АнаСин [4].

2. БЕЗГЕНЕРАТОРНЫЙ ЖРД ТЯГОЙ 200 ТС НА КОМПОНЕНТАХ КИСЛОРОД+КЕРОСИН

На рис.5 приведена предлагаемая в данной работе схема безгенераторного ЖРД, работающего на компонентах топлива жидкий кислород + керосин. В качестве хладагента используется вода.

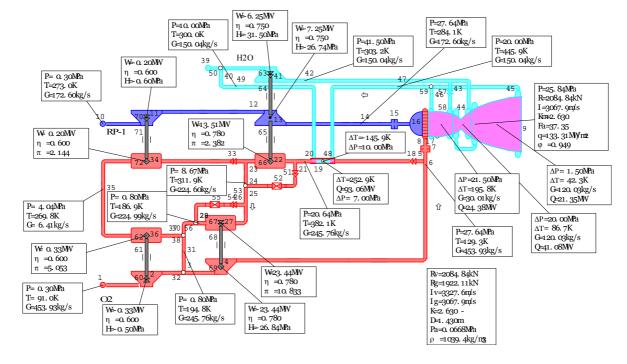


Рис. 5

В качестве базового варианта для сравнения с новой схемой был выбран двигатель-прототип, работающий на тех же компонентах топлива и выполненный по схеме с дожиганием окислительного генераторного газа. Основные расчетные параметры двигателя-прототипа приведены на рис.6 [5].

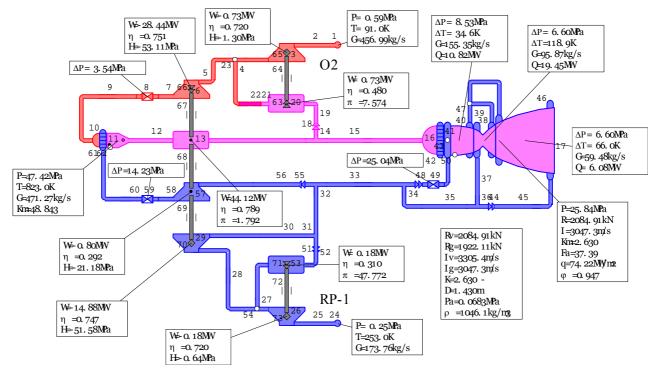
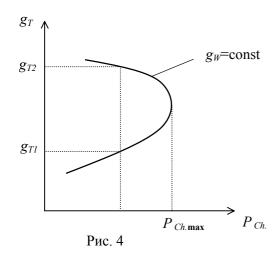


Рис. 6

Для удобства сравнения, основные параметры камеры сгорания: давление, соотношение компонентов, диаметр среза сопла, тяга на Земле у предлагаемой схемы двигателя были выбраны такими же как и у двигателя-прототипа.

Результаты сравнения двух схем приведены в таблице 1.

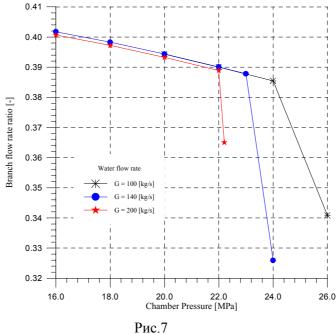
Таблица 1


N₂	Параметр	Двигатель- прототип	Безгазогенераторный ЖРД
1	Коэффициент удельного импульса	0.947	0.949
2	Удельный импульс на земле [м/с]	3047	3068
3	Удельный импульс в вакууме [м/с]	3305	3328
4	Расход хладогента [кг/с]	155	150
5	Сопротивление тракта охлаждения [МПа]	8.5	21.5
6	Давление на входе тракта охлаждения [МПа]	52.5	33.5
7	Общая мощность турбины [МВт]	44.12	36.9
8	Давление на выходе насоса окислителя [МПа]	55	27.5
9	Давление на выходе насоса горючего [МПа]	52.5	26.6
10	Рабочая температура среды [К]	823	351
11	Расход рабочей среды [кг/с]	471.3	245.8
12	Отношение давлений на турбине	1.792	25.8

3. БАЛАНСОВЫЕ ВОЗМОЖНОСТИ НОВОЙ СХЕМЫ

Балансовые возможности предлагаемой схемы ЖРД определяются давлением в камере сгорания $P_{\mathit{Ch.}}$ и двумя безразмерными расходами: $g_{\mathit{W}} = \frac{G_{\mathit{W}}}{G_{\mathit{F}}}$ - расходом хладагента $\left(G_{\mathit{W}}\right)$ в долях от

расхода горючего $\left(G_F\right)$ и $g_T=\frac{G_{OT}}{G_O+G_{OT}}$ - расходом кислорода, идущим на привод турбин $\left(G_{OT}\right)$ в долях от расхода кислорода через основной насос кислорода $\left(G_O+G_{OT}\right)$.


На рис.4 приведена качественная зависимость ${\sf g}_{\it T}$ от $P_{\it Ch.}$ при фиксированном значении параметра ${\it g}_{\it W}$.

Как видим, одному и тому же значению давления в камере сгорания соответствует два значения величины \mathbf{g}_T ($\mathbf{g}_{T1} < \mathbf{g}_{T2}$). Физически корень \mathbf{g}_{T1} соответствует случаю баланса схемы при малом расходе кислорода на привод турбин и соответственно высокой температуре разогрева кислорода. Корень \mathbf{g}_{T2} соответствует обратной ситуации: расход кислорода большой, а его температура не высока. Точка $P_{Ch. max}$ соответствует предельному давлению в камере сгорания.

Заметим, что нижняя ветка кривой на рис.4 практически не реализуется, т.к. чтобы нагреть кислород до высоких температур с помощью теплообменника, надо иметь достаточно высокую

температуру хладагента, что не приемлемо с позиции требования надежного охлаждения камеры сгорания.

На рис.7 в координатах g_T , P_{KC} показаны предельные возможности безгенераторной схемы ЖРД на компонентах кислород + керосин. Как видим, предельные возможности схемы по давлению в камере сгорания увеличиваются с уменьшением расхода воды.

4. ОЦЕНКА БАЛЛИСТИЧЕСКОЙ ЭФФЕКТИВНОСТИ НОВОЙ БЕЗГЕНЕРАТОРНОЙ СХЕМЫ ЖРД

К сожалению, приведенные на рис. 5 и 6 результаты не позволяют сделать однозначный вывод о предпочтительности одной из схем ЖРД перед другой. Для однозначного ответа на этот вопрос необходимо сравнить баллистическую эффективность некоторой базовой ракеты-носителя, укомплектованной сравниваемыми двигателями [5].

В таблице 2 приводятся данные для проведения баллистических расчетов.

Таблица 2

		т иолици 2
Вариант №	Базовый	1
Компоненты	О ₂ +керосин	О ₂ +керосин
Тип схемы	С дожиганием ОГГ	Безгенераторная схема
Тяга на Земле [кН]	1922	1922
Тяга в пустоте [кН]	2085	2085
Диаметр среза сопла [м]	1.43	1.43
Давление в камере сгорания [МПа]	25.84	25.84
Соотношение компонентов [-]	2.63	2.63
$arphi_I$	0.947	0.949
Удельный импульс тяги в пустоте [м/с]	3305	3328
Удельный импульс тяги на Земле [м/с]	3047	3068
Боковая поверхность камеры сгорания [м ²]	4.2	4.95
Мощность ТНА [Мвт]	44.12	36.95

При расчетах баллистической эффективности новых схем ЖРД в качестве критерия сравнения использовалось приращение относительной массы полезного груза по отношению к относительной массе полезного груза базового варианта ракеты-носителя. При замене базового ЖРД на новые двигатели принято постоянство стартовых масс ракеты-носителя.

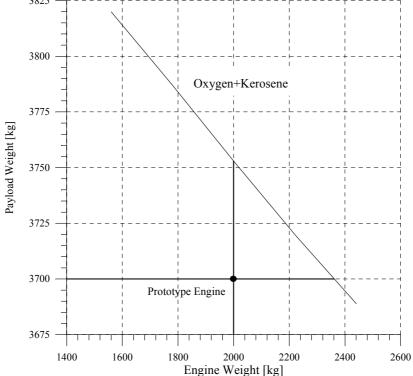
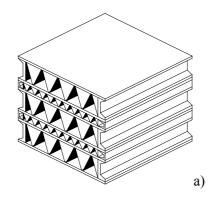


Рис. 8


Из приведенных на рис. 8 данных следуют следующие выводы:

- 1) Если удается сохранить массу двигателя новой схемы на уровне массы двигателя базового варианта, то новая схема дает прирост в массе полезного груза ~ 55 кг.
- 2) На двигателях новой схемы можно вывести ту же полезную нагрузку, что и для опорного варианта, даже если их масса окажется на ≈ 330 кг больше массы двигателей опорного варианта.

5. ПРЕДВАРИТЕЛЬНАЯ ОЦЕНКА МАССЫ ДВИГАТЕЛЯ НОВОЙ СХЕМЫ

Предварительная оценка массы двигателя новой схемы была проведена в следующих допушениях:

- 1) масса камеры сгорания и сопла пропорциональна ее боковой поверхности;
- 2) масса ТНА пропорциональна его суммарной мощности в степени 0.5;
- 3) масса газогенератора двигателя-прототипа составляет 100÷120 кг;
- 4) масса агрегатов автоматики и агрегатов общей сборки у сравниваемых двигателей одинакова;
- 5) масса теплообменного аппарата находилась расчетным путем для некоторой условной его схемы (см. рис. 9).

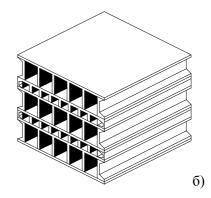


Рис. 9

Расчетные оценки дали следующие результаты. Масса камеры сгорания новой схемы на $\sim 18\%$ ($\sim 70~\rm kr$) больше массы камеры сгорания опорного варианта. Масса ТНА у безгенераторной схемы на керосине на 8.5% ($\sim 45~\rm kr$) меньше, чем у опорного варианта. Оценочная масса теплообменника, способного передать в кислород $\sim 93~\rm MBT$ тепловой мощности, составляет $250~\rm kr$.

Таким образом, масса предлагаемого двигателя при работе его на керосине будет на 170 кг больше массы двигателя-прототипа.

6. ПРОБЛЕМНЫЕ ВОПРОСЫ СОЗДАНИЯ ДВИГАТЕЛЯ НОВОЙ СХЕМЫ

В целом, предлагаемая схема ЖРД, может быть реализована на базе существующих технологий и имеющегося научно-технического задела. Низкие температуры рабочего тела турбины позволяют в определенной степени упростить технологию изготовления газового тракта двигателя и его газовых турбин, и низкие напоры насосов, упростить их конструктивные решения.

Вместе с тем для реализации новой схемы необходимо решение следующих научнотехнических проблем:

- создание эффективного легкого теплообменника;
- создание эффективного легкого струйного холодильника-смесителя;
- исследование возможности безкавитационной работы основного насоса кислорода в условиях, когда перед ним расположен холодильник-смеситель;
- вопросы запуска и останова двигателя новой схемы;
- вопросы запуска и останова теплообменника (в частности, обеспечение недопустимости замерзания воды в его каналах);
- корректная оценка массовых характеристик двигателя новой схемы.

выводы

- 1. Рассмотрена принципиальная возможность реализации новой схемы безгенераторного ЖРД, позволяющей расширить диапазон работоспособности двигателя по тяге до 200 тс; по давлению в камере сгорания до 25 МПа. В отличие от существующих безгенераторных ЖРД предлагаемая схема ЖРД способна работать на кислороде и любом углеводородном горючем.
- 2. Проведено сравнение новой схемы ЖРД со схемой с дожиганием окислительного генераторного газа на компонентах кислород + керосин. Показана высокая экономичность и надежность новой схемы ЖРД.
- 3. Оценена баллистическая эффективность безгенераторной схемы ЖРД на керосине. Показано, что по баллистической эффективности двигатели новой схемы не уступают и даже слегка превосходят двигатели, выполненные по схеме с дожиганием окислительного генераторного газа.
- 4. По сравнению со схемой ЖРД с дожиганием окислительного генераторного газа повышенная надежность новой схемы безгенераторного ЖРД обусловлена
 - отсутствием газогенератора и систем, связанных с его запуском и остановом;
 - низкими температурами рабочего тела турбин (~ 350°K);
 - минимальными уровнями давлений за насосами окислителя и горючего (на уровне давления в камере сгорания).

ЛИТЕРАТУРА

- 1. Космонавтика (энциклопедия), под редакцией В.П. Глушко, Москва, Издательство «Советская энциклопедия», 1985.
- 2. The Many Facets of the RL10 Liquid Rocket Engine ... A Continuing Success Story. AIAA-98-3680.
- 3. Design and Development of an Advanced Expander Combustor. AIAA 98-3675.
- 4. Е.В. Лебединский, С.В. Мосолов, В.И. Тарарышкин, и др. Пакет программ AnaSyn for Windows. Свидетельство об официальной регистрации № 960293, 1996.
- 5. С.П. Уманский. Ракеты-носители. Космодромы. Москва, Рестарт+, 2001.